19 stycznia 2019


Przygotowanie pomocniczej powierzchni – możemy stworzyć pierwszą powierzchnię jako poprawną, w oparciu o istniejące trzy brzegi, oraz dodatkową krzywą pomiędzy nimi, tak aby ustaliła z którąś z istniejących krzywych wspólny kierunek UV. Następnie należy przyciąć taką powierzchnie, jak w poprzednim punkcie, aby zaistniały warunki czterobrzegowe i wypełnić brakujące miejsce drugą poprawną powierzchnią (Rys. 14-15).

obrazek nr 15
Rys. 14

obrazek nr 16
Rys. 15


Przycięcie powierzchni – możemy przygotować dwie poprawne powierzchnie, a następnie przyciąć je tak, aby uzyskać powierzchnię wyglądającą jak trójbrzegowa (Rys. 16).

obrazek nr 17
Rys. 16

Następne w kolejności są zagadnienie pięciobrzegowe. Podobnie jak w poprzednim przypadku występuje kilka możliwości:
Rozwiązanie dwupowierzchniowe (przycinanie powierzchni) – pierwsza powierzchnia pierwotna zostaje przycięta do warunków czterobrzegowych, druga powstaje na nich właśnie. Na początku należy przygotować dodatkową krzywą, tak aby stworzyła z istniejącymi brzegami podstawowe zagadnienie czterobrzegowe z równomiernym rozkładem kierunków UV. Następnie przycinamy powierzchnię pierwotną pojedynczą krzywą stworzoną na tej powierzchni lub na nią zrzuconą, i wypełniamy brakującą przestrzeń drugą poprawną powierzchnią (Rys. 17-19).

obrazek nr 18
Rys. 17

obrazek nr 19
Rys. 18

obrazek nr 20
Rys. 19

Niestety rozwiązanie poprowadzone jak wyżej niesie ze sobą pewne niedoskonałości w postaci pierwszej powierzchni przyciętej ostro do jednego lub dwóch wierzchołków. Będę ten przypadek nazywał krytycznym wierzchołkiem. Staje się to wyśmienitym przyczynkiem do dalszych kłopotów (Rys. 20).

obrazek nr 21
Rys. 20


Pojawią się one bądź w trakcie łączenia takiej powierzchni z sąsiadującymi, bądź w trakcie dalszych operacji, polegających na przycinaniu tego miejsca, bądź też podczas odsuwaniu, np. dla nadania grubości. Lepiej dążyć do sytuacji, w której pierwsza bazowa powierzchnia będzie przycinana bez pozostawiania krytycznego wierzchołka, tak jak na rysunku 21 (i dalszych).

obrazek nr 22
Rys. 21

Rozwiązanie trójpowierzchniowe (bez przycinania powierzchni) – to podejście rozbija powierzchnię pięciobrzegową na trzy wzajemnie styczne powierzchnie, bez obszarów z krytycznymi wierzchołkami, jak poprzednio. To duży plus. Minus to o wiele więcej gimnastyki, aby finalny układ powierzchni przygotować (Rys. 22-23).

obrazek nr 23
Rys. 22

obrazek nr 24
Rys. 23

Ostatnie w kolejności zostanie omówione zagadnienie sześciobrzegowe. Metody jego rozwiązywania są bardzo podobne do omawianego wcześniej zagadnienia pięciobrzegowego. A więc użytkownicy mogą zdecydować się na:
Rozwiązanie przycinające powierzchnie – należy rozpocząć od powierzchni pierwotnej, a następnie przyciąć ją, odpowiednią ilość razy, do potrzebnych zagadnień czterobrzegowych (Rys. 24-25).

obrazek nr 25
Rys. 24

obrazek nr 26
Rys. 25

Rozwiązanie bez przycinania powierzchni – w tym przypadku użytkownicy muszą rozbić zagadnienie sześciobrzegowe na sześć samodzielnych, lecz wzajemnie stycznych powierzchni. Przygotowanie ich wymaga wcześniej pracy nad odpowiednią siecią krzywych, przecinających się wzajemnie w tym samym miejscu. Krzywe te powinny być rozpięte pomiędzy takimi brzegami, aby tworzyć naturalny kierunek, być jakby w linii (Rys. 26-27).

obrazek nr 27
Rys. 26

obrazek nr 28
Rys. 27

Podsumowanie
Techniki opisane powyżej są uniwersalne i aktualne, bez względu na środowisko CAD, o ile umożliwia ono tworzenie powierzchni typu NURBS oraz krzywych klejonych. Przedstawione rozwiązania znajdują szerokie zastosowania, zwłaszcza w projektowaniu elementów dla motoryzacji (nadwozie, wnętrze auta) oraz produktów konsumenckich o wysokich walorach estetycznych. W produktach tych liczą się przede wszystkim przejścia pomiędzy poszczególnymi powierzchniami, a w zasadzie najlepsze zarządzanie krzywizną na całym obszarze modelu, oraz poprawność „topologiczna” (najlepiej aby wszystkie powierzchnie były czterobrzegowe). Przedstawione techniki pozwolą użytkownikom mieć większe pole manewru w przypadku wątpliwej jakości powierzchni N-brzegowej, przygotowanej z automatu przez środowisko CAD.

Jacek Mydlikowski

 

artykuł pochodzi z wydania 6 (129) czerwiec 2018

 

Czytaj także:

Metody wykorzystania korpusów form Metody wykorzystania korpusów form
Projektowanie konstrukcji formy wtryskowej jest procesem bardzo złożonym. Cały przebieg prac, jakie...
Model powierzchni na podstawie jej równania Model powierzchni na podstawie jej równania
Po raz kolejny podejmuję temat z zakresu matematyka/geometria i programowanie. Zwykle inspirują...
Optymalizacja masy konstrukcji Optymalizacja masy konstrukcji
Podczas tworzenia konstrukcji, oprócz aspektów wizualizacyjnych i użytkowych, bierze się pod uwagę r...
Alternatywa dla „klasycznego” modelowania CAD; cz. 1 Alternatywa dla „klasycznego” modelowania CAD; cz. 1
Skąd wiadomo jaki kształt ma mieć projektowany element? Odpowiedź wydaje się oczywista: taki, jaka jest...