19 kwietnia 2024

Tego rodzaju mieszaniny wykorzystuje się do cięcia blach o grubości do 160 mm. Zawartość wodoru może w nich sięgać objętościowo 35% - ostateczna wartość zależy od grubości obrabianego materiału. Dalsze zwiększanie udziału wodoru nie prowadzi już do istotnego przyspieszenia procesu, natomiast przy jego objętości w mieszaninie powyżej 40% na powierzchni cięcia mogą pojawiać się spęcznienia i zagłębienia, a także osady żużlowe na dolnej krawędzi ciętego materiału.

Azot
Pod względem właściwości fizycznych azot można umiejscowić pomiędzy argonem a wodorem. Pierwiastek ten posiada masę atomową 14 – znacznie wyższą od wodoru, ale znacznie niższą od argonu. Współczynnik przewodzenia ciepła i entalpia są w jego przypadku wyższe od argonu i niższe od wodoru. Azot w podobny sposób jak wodór zawęża łuk plazmowy, a jego energia cieplna uwalniana podczas rekombinacji skutecznie upłynnia roztapiany materiał. Z tego powodu może pełnić funkcję niezależnego gazu plazmowego. Azot jako gaz plazmowy zapewnia szybkie i pozbawione nalotów tlenkowych cięcie elementów o cienkich przekrojach. Jego wadą jest stosunkowo duża liczba generowanych bruzd. Bardzo rzadko uzyskuje się cięcia o idealnie równoległych krawędziach. Kąt pochylenia płaszczyzn cięcia uzależniony jest od ustalonej objętości gazu i od prędkości cięcia. Absorpcja azotu na powierzchni przecięcia wywiera niekorzystny wpływ na spawalność. Zwiększone stężenie tego pierwiastka na powierzchni skutkuje powstawaniem pęcherzy gazowych i porowatością roztopionego materiału.

Mieszaniny azotowo-wodorowe
Mieszaniny azotowo-wodorowe stosuje się powszechnie do cięcia stali wysokostopowych i aluminium. Ułatwiają one uzyskiwanie cięć o równoległych krawędziach przy prędkościach znacznie wyższych niż w przypadku argonu. Jednocześnie utlenianie powierzchni przecięcia jest mniejsze niż podczas stosowania czystego azotu. Tego typu mieszaniny – określanie mianem gazów formujących – zawierają do 20% wodoru.

Mieszaniny argonowo-wodorowo-azotowe
Mieszaniny argonowo-wodorowo-azotowe stosuje się powszechnie do cięcia stali wysokostopowych i aluminium. Zapewniają one dobrą jakość krawędzi przecięcia, a w odróżnieniu od mieszanin argonowo-wodorowych, przysparzają mniej problemów związanych z powstawaniem żużlu. Najczęściej stosowane mieszaniny zawierają ok. 50-60% argonu i 40-50% azotu wraz z wodorem.. Zawartość azotu z reguły nie przekracza 30%. Zawartość wodoru w mieszaninie uzależniona jest od grubości ciętego elementu: im grubszy materiał, tym więcej powinno być wodoru. Uzupełnienie mieszanin argonowo-wodorowych azotem podczas cięcia stali wysokostopowych i konstrukcyjnych pozwala uzyskiwać wyższe prędkości robocze oraz czyste krawędzie bez osadów żużlowych.

Tlen
Tlen stosuje się w charakterze gazu plazmowego przy  cięciu stali niestopowych i niskostopowych. W kontakcie z tlenem zmniejsza się lepkość roztopionego materiału, przez co staje się on bardziej płynny. To z kolei pozwala uzyskać krawędzie wolne od zanieczyszczeń żużlowych i krawędzie górne bez niepożądanych zaokrągleń. W porównaniu z azotem i powietrzem, tlen zapewnia wyższe prędkości cięcia, a ponadto nie powoduje wnikania azotu w powierzchnię przecięcia.

tab1
Tab. 1  Zalecane mieszanki gazowe i ich wpływ na jakość krawędzi ciętego materiału

Minimalizuje też ryzyko tworzenia porów w trakcie późniejszego spawania. Ze względu na wysoką prędkość cięcia strefa wpływu ciepła jest minimalna, a właściwości mechaniczne ciętego metalu nie ulegają pogorszeniu. Wysoką prędkość procesu uzyskuje się dzięki reakcji chemicznej pomiędzy tlenem a ciętym materiałem.

Dwutlenek węgla
W procesach cięcia plazmowego zasadniczo nie stosuje się dwutlenku węgla w charakterze gazu plazmowego – pełni on głównie rolę gazu pomocniczego lub chłodzącego.

Powietrze
Głównymi składnikami powietrza są azot (78,18% objętościowo) i tlen (20,8%). Połączenie tych dwóch gazów tworzy bardzo energetyczną mieszaninę. Powietrze wykorzystuje się jako gaz plazmowy do cięcia stali niestopowych, niskostopowych, a także stali wysokostopowych i aluminium, najczęściej w procesach cięcia ręcznego oraz do cięcia cienkich blach. W przypadku cięcia stali niestopowych i niskostopowych rozwiązanie to zapewnia równe i stosunkowo gładkie krawędzie. Jednak powietrze jako gaz tnący powoduje również wzrost zawartości azotu w ciętych powierzchniach. W przypadku braku obróbki mechanicznej po zakończeniu procesu, występuje ryzyko późniejszego powstawania porów podczas spawania. W przypadku cięcia aluminium może wystąpić odbarwienie krawędzi.

Woda (para wodna)
Po osiągnięciu określonej temperatury z wody wydzielają się jej składniki – wodór i tlen. Dostarczenie dodatkowej energii powoduje dysocjację i jonizację wody. W metodach cięcia plazmowego z wtryskiem wody i w osłonie mgły wodnej część wody wykorzystywana jest do przenoszenia energii cieplnej, podczas gdy pozostała część odpowiada za skupienie łuku plazmowego i chłodzenie dyszy.

Doprowadzanie gazów do układów cięcia plazmowego
Urządzenia do cięcia plazmowego wykorzystują jeden lub kilka różnych gazów. Wymagane parametry ciśnienia i przepustowości zależą od rodzaju stosowanych urządzeń. W każdym przypadku należy postępować zgodnie ze specyfikacją producenta. Gazy mogą być dostarczane w pojedynczych butlach, w wiązkach butli, w zbiornikach przewoźnych lub w zbiornikach stacjonarnych.
Postać dostarczanego gazu (gazowa lub płynna) zależy głównie od przewidzianego zapotrzebowania.

tab2
Tab. 2  Wymogi dotyczące czystości gazów do cięcia plazmowego wg normy ISO 8573

Wymagana objętość gazów plazmowych i pomocniczych uzależniona jest od różnych czynników, takich jak średnica dyszy, ciśnienie gazu czy prąd cięcia – zwykle wartość ta mieści się w przedziale 20-100 l/min. Przy zużyciu na poziomie ok. 200–300 m³/tydzień gaz dostarcza się w postaci lotnej, natomiast powyżej tej wartości – w postaci płynnej.
W przypadku spadku natężenia przepływu gazu poniżej wartości określonych przez producenta pojawia się ryzyko poważnego uszkodzenia palnika. Dlatego należy przestrzegać zalecanych przez producenta wartości ciśnienia, które nie powinno spaść poniżej 12 barów.
Tabela 2 przedstawia minimalne wymagania dotyczące czystości gazów stosowanych do cięcia plazmowego stali niestopowych, niskostopowych, konstrukcyjnych, wysokostopowych, a także aluminium. Nieprzestrzeganie powyższych wartości może w istotny sposób wpływać na jakość i opłacalność procesu ze względu na obniżenie prędkości cięcia.
W sytuacji doprowadzania gazów przy użyciu sprężarki zamiast butli należy bezwzględnie przestrzegać zamieszczonych w tabeli 2 wymogów dotyczących maksymalnej wielkości cząsteczek, zawartości oleju resztkowego i punktu rosy, ponieważ zwiększenie zawartości oleju i poziomu wilgoci może negatywnie wpłynąć na trwałość materiałów eksploatacyjnych, a także zwiększa ryzyko uszkodzenia palnika.

Podsumowanie
Od technologii cięcia metali oczekuje się obecnie coraz wyższej jakości przy jednoczesnym obniżaniu kosztów. Krawędzie ciętych elementów nie powinny wymagać dodatkowej obróbki, za to muszą gwarantować maksymalną dokładność wymiarową. Możliwość osiągnięcia takich efektów przy wykorzystaniu tradycyjnych technik cięcia coraz częściej staje pod znakiem zapytania.
Cięcie termiczne przy użyciu plazmy jest rozwiązaniem konkurencyjnym wobec cięcia metodą tlenową, laserem czy strumieniem wody. Może także stanowić alternatywę dla mechanicznych technik obróbki.
Właściwie dobrane gazy plazmowe i pomocnicze zapewniają zarówno stabilny przebieg procesu, jak również spełnienie oczekiwań jakościowych, oraz optymalne pod względem ekonomicznym cięcie materiałów konstrukcyjnych.

Krzysztof Baran
Linde Gas

Literatura:

  1. C. Landry: Plasma Arc Cutting, Tips for optimising cut quality, Welding Design and Fabrication, 09.1997
  2. Normy: DIN EN 2310-6, DIN EN ISO 9013, ISO 8206, DIN 8580, DIN 8590, DIN EN ISO 14175:08
  3. Materiały Kjellberg Finsterwalde Plasma und Maschinen GmbH

 

artykuł pochodzi z wydania 7/8 (94/95) lipiec/sierpień 2015